Compare and Contrast Meta Analysis (CCMA): A Method for Identification of Pleiotropic Loci in Genome-Wide Association Studies.
نویسندگان
چکیده
In recent years, genome-wide association studies (GWAS) have identified many loci that are shared among common disorders and this has raised interest in pleiotropy. For performing appropriate analysis, several methods have been proposed, e.g. conducting a look-up in external sources or exploiting GWAS results by meta-analysis based methods. We recently proposed the Compare & Contrast Meta-Analysis (CCMA) approach where significance thresholds were obtained by simulation. Here we present analytical formulae for the density and cumulative distribution function of the CCMA test statistic under the null hypothesis of no pleiotropy and no association, which, conveniently for practical reasons, turns out to be exponentially distributed. This allows researchers to apply the CCMA method without having to rely on simulations. Finally, we show that CCMA demonstrates power to detect disease-specific, agonistic and antagonistic loci comparable to the frequently used Subset-Based Meta-Analysis approach, while better controlling the type I error rate.
منابع مشابه
Identification of genomic loci controlling phenologic and morphologic traits in barley (Hordeum vulgare L.) genotypes using association analysis
Association mapping is a technique with high resolution for QTL mapping based on linkage disequilibrium and has shown more promising for describing genetically complex traits. In addition, it is a powerful tool for describing complex agronomic traits and identifying alleles that can contribute to enhance the desired traits. In this study, whole genome association mapping was used in a set of 14...
متن کاملGenome-wide Association Study to Identify Genes and Biological Pathways Associated with Type Traits in Cattle using Pathway Analysis
Extended Abstract Introduction and Objective: Type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlate with other economically important traits in cattle including fertility, longevity and carcass traits. The present study aimed to conduct a genome wide association studies (GWAS) based on gene-set enrichment analysis for identifying the ...
متن کاملUnveiling the genetic loci for a panicle developmental trait using genome-wide association study in rice
Panicle size has a high correlation with grain yield in rice. There is a bottleneck to identify the additional quantitative trait loci (QTL) for panicle size due to the conventional traits used for QTL mapping. To identify more genetic loci for panicle size, a panicle developmental trait (LNTB, the length from panicle neck-knot to the first primary branch in the rachis) related to panicle size ...
متن کاملMultivariate Analysis of Anthropometric Traits Using Summary Statistics of Genome-Wide Association Studies from GIANT Consortium
Meta-analysis of single trait for multiple cohorts has been used for increasing statistical power in genome-wide association studies (GWASs). Although hundreds of variants have been identified by GWAS, these variants only explain a small fraction of phenotypic variation. Cross-phenotype association analysis (CPASSOC) can further improve statistical power by searching for variants that contribut...
متن کاملThe Pattern of Linkage Disequilibrium in Livestock Genome
Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PloS one
دوره 11 5 شماره
صفحات -
تاریخ انتشار 2016